skip to main content


Search for: All records

Creators/Authors contains: "Hayenga, William E."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Abstract Topological insulator lasers (TILs) are a recently introduced family of lasing arrays in which phase locking is achieved through synthetic gauge fields. These single frequency light source arrays operate in the spatially extended edge modes of topologically non-trivial optical lattices. Because of the inherent robustness of topological modes against perturbations and defects, such topological insulator lasers tend to demonstrate higher slope efficiencies as compared to their topologically trivial counterparts. So far, magnetic and non-magnetic optically pumped topological laser arrays as well as electrically pumped TILs that are operating at cryogenic temperatures have been demonstrated. Here we present the first room temperature and electrically pumped topological insulator laser. This laser array, using a structure that mimics the quantum spin Hall effect for photons, generates light at telecom wavelengths and exhibits single frequency emission. Our work is expected to lead to further developments in laser science and technology, while opening up new possibilities in topological photonics. 
    more » « less
  2. Abstract Finding the solution to a large category of optimization problems, known as the NP-hard class, requires an exponentially increasing solution time using conventional computers. Lately, there has been intense efforts to develop alternative computational methods capable of addressing such tasks. In this regard, spin Hamiltonians, which originally arose in describing exchange interactions in magnetic materials, have recently been pursued as a powerful computational tool. Along these lines, it has been shown that solving NP-hard problems can be effectively mapped into finding the ground state of certain types of classical spin models. Here, we show that arrays of metallic nanolasers provide an ultra-compact, on-chip platform capable of implementing spin models, including the classical Ising and XY Hamiltonians. Various regimes of behavior including ferromagnetic, antiferromagnetic, as well as geometric frustration are observed in these structures. Our work paves the way towards nanoscale spin-emulators that enable efficient modeling of large-scale complex networks. 
    more » « less
  3. The dynamical behavior of broken symmetric coupled cavity lasers is theoretically investigated. The frequency response of this class of lasers is obtained using small signal analysis under direct modulation. Our model predicts a modulation bandwidth enhancement as a broken symmetric laser, operating in the parity-time (PT) symmetry and non-PT symmetry domains. This theoretical prediction is numerically examined in a laser system based on an InGaAs quantum dot platform. Our results clearly show that in these structures, in addition to the injection current, the gain-loss contrast can be used as a new degree of freedom in order to control the characteristic poles of the frequency response function.

     
    more » « less
  4. Single-mode lasing is demonstrated in an electrically injected coupled microring arrangement at telecommunication wavelengths by exploiting the unique physics associated with parity-time-symmetry. 
    more » « less